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Abstract. In the Dual-Primal FETI method, introduced by Farhat et al. [5], the domain is

decomposed into non-overlapping subdomains, but the degrees of freedom on crosspoints remain
common to all subdomains adjacent to the crosspoint. The continuity of the remaining degrees of
freedom on subdomain interfaces is enforced by Lagrange multipliers and all degrees of freedom are
eliminated. The resulting dual problem is solved by preconditioned conjugate gradients. We give
an algebraic bound on the condition number, assuming only a single inequality in discrete norms,
and use the algebraic bound to show that the condition number is bounded by C(1 + log2(H/h)) for
both second and fourth order elliptic selfadjoint problems discretized by conforming finite elements,
as well as for a wide class of finite elements for the Reissner-Mindlin plate model.

1. Introduction. This article is concerned with convergence bounds for an iter-
ative method for the parallel solution of symmetric, positive definite systems of linear
equations that arise from elliptic boundary value problems discretized by finite ele-
ments. The original Finite Element Tearing and Interconnecting method (FETI) was
proposed by Farhat and Roux [9]. The FETI method consists of decomposing the
domain into non-overlapping subdomains, enforcing that the corresponding degrees
of freedom on subdomain interfaces coincide by Lagrange multipliers, and eliminat-
ing all degrees of freedom, leaving a dual system for the Lagrange multipliers. The
dual system was solved by preconditioned conjugate gradients with a diagonal pre-
conditioner. Evaluation of the dual operator involves the solution of independent
Neumann problems in all subdomains, and of a small system of equations for the
nullspace component.

Farhat, Mandel, and Roux [8] recognized that this system for the nullspace com-
ponents plays the role of a coarse problem that facilitates global exchange of informa-
tion between the subdomains, causing the condition to be bounded as the number of
subdomains increases. They also replaced the diagonal preconditioner by a block pre-
conditioner with the solution of independent Dirichlet problems in each subdomain
and observed numerically that this Dirichlet preconditioner results in a very slow
growth of the condition number with subdomain size. Mandel and Tezaur [13] proved
that the condition number grows at most as log3(H/h), where H is subdomain size
and h is element size, both in 2D and 3D. Tezaur [19] proved that a method by Park,
Justino, and Felippa [16] is equivalent to the method of [9] with a special choice of
the constraint matrices, and proved the log2(H/h) bound for this variant. For further
comparison, see Rixen et al. [18].

Klawonn and Widlund [10] have used preconditioned conjugate residuals to solve
a saddle problem keeping both the original degrees of freedom and the Lagrange
multipliers, and obtained the asymptotic bound log2(H/h) using an extension of the
theory of [13]. The saddle point approach has the advantage that approximate solvers
can be used for both the Neumann and the Dirichlet subdomain problems, at the cost
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of of solving a larger indefinite problem instead of a small positive definite problem.
In [10], Klawonn and Widlund have proposed new preconditioners, proved uniform
bounds for modifications of the method for the case of coefficient jumps, which include
an earlier algorithm of Rixen and Farhat [17], and provided further theoretical insights.

The original method of [9, 8] does not converge well for plate and shell problems,
and the existence and the form of the coarse space depend on the singularity of the
subdomain matrices. Therefore, Mandel, Tezaur, and Farhat [14] and Farhat, Mandel,
and Chen [7] proposed to project the Lagrange multipliers in each iteration on an
auxiliary space. An auxiliary space chosen so that the corresponding primal solutions
are continuous on crosspoints made it possible to prove that the condition number
does not grow faster than log3(H/h) for plate problems [14], and fast convergence was
observed for plate [7] as well as shell problems [4]. This method is now called FETI-2.
For related results for symmetric positive definite problems, see [6, 18] and references
therein.

The subject of this paper is the Dual-Primal FETI method (FETI-DP), intro-
duced by Farhat et al. [5]. This method enforces the continuity of the primal solution
at crosspoints directly by the formulation of the dual problem: the degrees of freedom
on a crosspoint remain common to all subdomains sharing the crosspoint and the
continuity of the remaining degrees of freedom on the interfaces in enforced by La-
grange multipliers. The degrees of freedom are then eliminated and the resulting dual
problem for the Lagrange multipliers is solved by preconditioned conjugate gradients
with a Dirichlet preconditioner. Evaluating the dual operator involves the solution of
independent subdomain problems with nonsingular matrices and of a coarse problem
based on subdomain corners. The advantage of this method is a simpler formulation
than the methods of [14, 7], there is no need to solve problems with singular matrices,
and the method was observed to be significantly faster in practice for 2D problems.
However, the design of a good 3D variant of the method is an open problem [5].

In this paper, we prove that the condition number of the FETI-DP method with
the Dirichlet preconditioner does not grow faster than log2(H/h) for both second
order and fourth order problems in 2D. By spectral equivalence, the result for fourth
order problems extends to a large class of Reissner-Mindlin elements for plate bending
as in [11, 12, 14]. After few initial definitions, which are substantially different, the
analysis is related to the analysis developed in [13, 14]. Just as the formulation of the
present method is simpler, the analysis is simpler and more elegant than in [13, 14].

The paper is organized as follows. The notation and assumptions are introduced in
Section 2. In Section 3, we review the algorithm from [5]. Section 4 gives the algebraic
condition number estimates; these estimates apply to partitioning any symmetric
positive definite system, not necessarily originating from partial differential equations.
Finally, in Section 5, we prove the polylogarithmic condition number bounds for two
model problems of the second and fourth order.

2. Domain partitioning, notation, and assumptions. We are concerned
with iterative solution of symmetric, positive definite linear algebraic systems. Parti-
tioning of the system is motivated as follows. Let Ω be a domain in <2 decomposed
into Ns non-overlapping subdomains Ω1, Ω2, . . . , ΩNs , and each of the subdomains
be a union of some of the elements. Let us be the vector of degrees of freedom for
the subdomain Ωs corresponding to a conforming finite element discretization of a
second order elliptic problem or a fourth order plate bending problem defined on Ω.
Let Ks and fs be the local stiffness matrix and the load vector associated with the
subdomain Ωs. We denote the edges of the subdomains by Γst = ∂Ωs ∩ ∂Ωt. Corners
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are endpoints of edges.
The subdomain vectors are partitioned as

us =

 usi
usr
usc

 ,(2.1)

where usi are the values of the degrees of freedom in the subdomain interior, usc the
values of the degrees of freedom at the corners of the subdomain, and usr are the
remaining values of the degrees of freedom, i.e. those located on the edges of the sub-
domains between the corners. The subdomain matrices are partitioned accordingly,

Ks =

 Ks
ii Ks

ir Ks
ic

Ks
ri Ks

rr Ks
rc

Ks
ci Ks

cr Ks
cc

 .(2.2)

We use the block notation

u =

 u1

...
uNs

 and K = diag(Ks) =

 K1

. . .
KNs

 .
The block vectors ui, uc and ur of all internal, all corner, and all remainder degrees
of freedom, respectively, are then defined similarly,

ui =

 u1
i

...
uNsi

 , ur =

 u1
r

...
uNsr

 , and uc =

 u1
c

...
uNsc

 .
Vectors of values of degrees of freedom on the whole ∂Ωs and the corresponding block
vectors will be written as

vsr,c =
[
vsr
vsc

]
, vr,c =

 v1
r,c
...

vNsr,c

 , and also vr,c =
[
vr
vc

]
.

Let the global to local map be a 0− 1 block matrix

L =

 L1

...
LNs

 .
That is, for a global vector of degrees of freedom ug, Lsug is the vector of correspond-
ing degrees of freedom on Ωs. The map L is introduced so that we can state the
problem to be solved,

LTKLug = LT f,(2.3)

independently of the solution algorithm. Note that ImL is the space of all vectors u
that are continuous across the subdomain interfaces and that L is of full column rank.

We assume that each matrix Ks is symmetric positive semidefinite and that Ks

is positive definite on the subspace of vectors that are zero at subdomain corners,
{us|usc = 0}. We also assume that the global stiffness matrix LTKL is positive
definite, or, equivalently, that K is positive definite on ImL. These assumptions are
satisfied in the intended finite element applications.
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3. Formulation of the algorithm. In this section, we review the algorithm
proposed in [5] in a form suitable for our purposes.

The degrees of freedom from both sides of each edge Γst should coincide,

usr|Γst − utr|Γst = 0.(3.1)

In (3.1), each pair of subdomains {s, t} is taken only once, with the order (s, t) chosen
arbitrarily. We write the constraints (3.1) as

Brur = 0, Br = [B1
r , . . . , B

Ns
r ].

Note that it follows immediately from the definition of Br that

BrB
T
r = 2I(3.2)

and, for any edge Γst,

(BTr Brur)
s|Γst = ±(usr|Γst − utr|Γst).(3.3)

Let Bc be a matrix with 0, 1 entries implementing the global-to-local map on
subdomain corners. That is, the equation

uc = Bcu
g
c , Bc =

 B1
c

...
BNsc

 ,
determines the common values of the degrees of freedom on subdomain corners from
a global vector ugc .

From the construction, the space of all vectors of degrees of freedom continuous
across the interfaces can be written as

ImL = {u|Brur = 0, uc ∈ ImBc}.

The problem (2.3) is reformulated as the equivalent constrained minimization problem

1
2
uTKu− uT f → min,

subject to Brur = 0 and uc = Bcu
g
c for some ugc ,

which is in turn equivalent to finding the stationary point of the Lagrangean

L(ui, ur, ugc , λ) =
1
2
vTKv − vT f + uTr B

T
r λ, v = [vs], vs =

 usi
usr
Bscu

g
c

 .
Eliminating usi , u

s
r, and ugc from the Euler equations, we obtain a dual system of the

form, cf. [5, Eq. (14)],

Fλ = g,(3.4)

and solve it using the preconditioned conjugate gradients method with the precondi-
tioner

M = BrSrrB
T
r ,(3.5)

where

Srr = diag(Ssrr), Ssrr = Ks
rr −Ks

riK
s
ii
−1Ks

ir.(3.6)

For details of the implementation and numerical results, see [5].
4



4. Algebraic bounds. In this section, we prove bounds on the condition num-
ber of the iterative method defined by Eqs. (3.4) and (3.5). Denote ‖u‖ =

√
uTu and,

for a symmetric positive semidefinite matrix A, denote the induced matrix seminorm
|u|A =

√
uTAu = ‖A1/2u‖. If A is known to be positive definite, we write ‖u‖A

instead or |u|A, because the seminorm is then known to be a norm.
From the minimization property of the Schur complement, we immediately ob-

tain the following lemma, which characterizes the bilinear form associated with the
preconditioner.

Lemma 4.1. It holds that uTr Srrur = min{vtKv|vr = ur, vc = 0}.
The next lemma gives a more specific description of the matrix of the dual equa-

tion (3.4).
Lemma 4.2. It holds that F = BrS̃

−1BTr , where the positive definite matrix S̃ is
defined by

uTr S̃ur = min{vtKv|vr = ur, vc ∈ ImBc}.(4.1)

Proof. Let

L̃(ur, λ) = min
ui,u

g
c

L(ui, ur, ugc , λ)

Then,

L̃(ur, λ) =
1
2
uTr S̃ur + uTr B

T
r λ− uTr hr,(4.2)

with some hr. Minimizing over ur, we get ur = S̃−1(hr − BTr λ). Substituting ur
into (4.2) and taking the variation over λ gives (3.4) with F = BrS̃

−1BTr .
We can now characterize the norm induced by the dual matrix F .
Lemma 4.3. It holds that

λTFλ = max
vr 6=0

|vTr BTr λ|2

‖vr‖2S̃
.(4.3)

Proof. From Lemma 4.2,

λTFλ = ‖S̃−1/2BTr λ‖2 = max
wr 6=0

|wTr S̃−1/2BTr λ|2

‖wr‖2
.

The substitution wr = S̃1/2vr yields (4.3).
Let V = <p be the space of Lagrange multipliers. In this space, define the norm

‖µ‖V = ‖BTr µ‖Srr

and also the dual norm,

‖λ‖V ′ = max
µ6=0

|µTλ|
‖µ‖V

.(4.4)

Since V = ImBr, substituting µ = Brwr, we can rewrite (4.4) as

‖λ‖V ′ = max
Brwr 6=0

|wTr BTr λ|
‖BTr Brwr‖Srr

.(4.5)
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The main result of this section is the following theorem, which gives a bound on
the minimal and maximal eigenvalues of the preconditioned operator MF .

Theorem 4.4. If there exists a constant c1 such that for all wr,

‖BTr Brwr‖2Srr ≤ c1‖wr‖
2
S̃
,

then

λmax(MF )
λmin(MF )

≤ c1
4
.

Proof. The proof is based on a comparison of (4.5) and (4.3). Using Lemma 4.3,
the substitution vr = BTr Brwr, and the property (3.2), we find that

λTFλ = max
vr 6=0

|vTr BTr λ|2

‖vr‖2S̃
≥ max

0 6=vr∈ImBTr Br

|vTr BTr λ|2

‖vr‖2S̃
= 4 max

Brwr 6=0

|wTr BTr λ|2

‖BTr Brwr‖2S̃
.

Since, by definition, ‖BTr Brwr‖2S̃ ≤ ‖B
T
r Brwr‖2Srr , we conclude, comparing with (4.5),

that

λTFλ ≥ 4‖λ‖2V ′ .(4.6)

On the other hand, from the assumption, we obtain

λTFλ = max
wr 6=0

|wTr BTr λ|2

‖wr‖2S̃
≤ c1 max

Brwr 6=0

|wTr BTr λ|
‖BTr Brwr‖Srr

= c1‖λ‖2V ′ .(4.7)

Trivially from the definition of M and the norm in V , we have

‖µ‖2V = µTMµ.(4.8)

Using (4.6), (4.7), and (4.8) in [13, Lemma 3.1] completes the proof.
We now show how to verify the assumption of Theorem 4.4 from inequalities of a

form that is more usual in substructuring and easier to estimate for boundary value
problems.

Denote by Es,t the operator that extends the vector of values of degrees of freedom
on Γst, not including corners, by zero entries to a vector of values of degrees of freedom
on the whole ∂Ωs, and let Es be the set of all indices of neighbors Ωt of the domain
Ωs, with a common edge Γst. Denote by Ss the Schur complement on ∂Ωs obtained
by eliminating the interior degrees of freedom of Ωs, i.e.,

usTSsus = min{vsTKsvs|vsr,c = usr,c}.

Our estimate is based on an a-priori bound of the error of approximating a vector
of interface degrees of freedom that is continuous across the corners by a vector that
is continuous also across the edges. In the applications in Sec. 5, the approximating
vector will be chosen as the natural interpolation on the edges from the corners.

Theorem 4.5. Suppose there is a constant c2 such that for every wr,c, wc ∈
ImBc, there exists ur such that Brur = 0 and, for all s and all t ∈ Es,

|Es,t(wir − uir)|2Ss ≤ c2|wir,c|2Si , i = s, t.(4.9)
6



Then,

λmax(MF )
λmin(MF )

≤ c2ne,

where ne is the maximum number of the edges of any subdomain.
Proof. Let wr be given and define wc to be the optimal corner degrees of freedom

from the definition of S̃, cf. (4.1). Then

‖wr‖2S̃ =
Ns∑
s=1

|wsr,c|2Ss .(4.10)

Let usr be as in the assumption of the theorem. Then Brur = 0, and, consequently,

BTr Brwr = BTr Br(wr − ur).

Extending BTr Brwr by zero values of all corner degrees of freedom, we get using the
definition of Srr, cf., (3.6), that

‖BTr Brwr‖2Srr =
Ns∑
s=1

|vsr,c|2Ss ,(4.11)

where

vsr =
(
BTr Br(wr − ur)

)s
, vsc = 0.

Using the definition of Es,t, we have

vsr,c =
∑
t∈Es

Es,tvsr .

Hence, from the triangle inequality, and then using the property (3.3) of Br and the
triangle inequality again, it follows that

|vsr,c|Ss ≤
∑
t∈Es

|Es,tvsr,c|Ss

≤
∑
t∈Es

(
|Es,t(wsr − usr)|Ss + |Es,t(wtr − utr)|Ss

)
.

Squaring the the last inequality, using the inequality (a + b)2 ≤ 2(a2 + b2), and the
a-priori bound (4.9) yields

|vsr,c|2Ss ≤ 2c2
∑
t∈Es

(
|wsr,c|2Ss + |wtr,c|2St

)
.

By the summation over the subdomains and using (4.11) and (4.10), we can conclude
that

‖BTr Brwr‖2Srr =
Ns∑
s=1

|vsr,c|2Ss ≤ 4c2ne
Ns∑
s=1

|wsr,c|2Ss = 4c2ne‖wr‖2S̃ .

It remains to use Theorem 4.4.
7



5. Applications. In this section, we verify the assumption of Theorem 4.5 for
two model problems. The Sobolev seminorm, denoted by |u|m,p,X , is the Lp(X) norm
of the generalized derivatives of of order m ≥ 0 of the function u. The Sobolev
norm is then defined by ‖u‖m,p,X = ‖ [|u|0,p,X , . . . , |u|m,p,X ] ‖`p . Sobolev norms for
noninteger m are defined by interpolation. Cf., e.g., [2, 15] for details and references.
In particular, |u|0,p,X = ‖u‖0,p,X = ‖u‖Lp(X), and, on the boundary Γ of a domain in
<2,

|u|21
2 ,2,Γ

=
∫

Γ

∫
Γ

|u(x)− u(y)|2

|x− u|2
dx dy.

5.1. A second order elliptic problem. Consider the boundary value problem

Au = g in Ω, u = 0 on ∂Ω,(5.1)

where

Av = −
d∑

i,j=1

∂

∂xi

(
α(x)

∂v(x)
∂xj

)
,

with α(x) a measurable function such that 0 < α0 ≤ α(x) ≤ α1 a.e. in Ω.
We assume that model problem (5.1) is discretized using conforming P1 or Q1

elements and denote by V P1
h (Ω) the corresponding finite element space that satisfies

the usual regularity and inverse properties [2]. Let h denote the characteristic element
size. Assume that all functions in V P1

h (Ω) vanish on the boundary of Ω. Assume
that each subdomain is the union of some of the elements and denote the space of
restrictions of functions from V P1

h (Ω) to subdomains by V P1
h (Ωs). For every vector

of degrees of freedom us, denote by IP1u
s the corresponding finite element function.

The trace of this function is determined by degrees of freedom on the boundary only
and we often abuse the notation to define the trace from the boundary values only.

For simplicity, we assume that the subdomains Ωi, i = 1, ..., Ns form a quasi-
regular triangulation of the domain Ω. Denote the characteristic size of the subdo-
mains by H. Finally, let C denote a generic constant independent of h and H.

Theorem 5.1. For the model second order problem, it holds that

λmax(MF )
λmin(MF )

≤ C
(

1 + log
H

h

)2

,

where the constant does not depend on H and h.
Proof. We only need to verify the assumptions of Theorem 4.5. For a given wr,c,

define ur,c by linear interpolation from wc; that is, IP1u
s
r,c is linear on all edges of Ωs,

and uc = wc. Writing wr,c = (wr,c − ur,c) + ur,c, we get from [1, Lemma 3.5] that

|IP1E
s,t(wsr − usr)| 12 ,2,∂Ωs ≤ C

(
1 + log

H

h

)
|wir,c|Ss .

Using the uniform equivalence of the seminorms |IP1v
s
r,c| 12 ,2,∂Ωs ≈ |vsr,c|Ss , cf., e.g.,

[1], and the uniform equivalence of the seminorms |v| 1
2 ,2,∂Ωs ≈ |v| 12 ,2,∂Ωt for functions

with support on the edge Γst, which follows from the fact that the subdomains are
shape regular, we get (4.9) with c2 = C

(
1 + log H

h

)2
.

Remark 5.2. The assumptions that the subdomains have straight edges can be
relaxed to accommodate the case of only shape regular subdomains with edges that are
not straight in a standard way by mapping from one or more reference subdomains.

8



5.2. A fourth order problem. Consider a biharmonic boundary value problem
in a variational form: Find u ∈ H2

0 (Ω) such that

a(u, v) = f(v), ∀v ∈ H2
0 (Ω),(5.2)

where

a(u, v) =
∫

Ω

∂11u∂11v + ∂12u∂12v + ∂22u∂22v, ∀u, v ∈ H2
0 (Ω).

Let the model problem (5.2) be discretized by reduced HCT elements [2]. We use
the same assumptions on the decomposition as in Section 5.1; in particular, the sub-
domain edges are straight. Let V HCTh (Ω) be the finite element space of HCT elements
satisfying the usual regularity and inverse properties and the essential boundary con-
ditions. Note that V HCTh (Ω) ⊂ C1(Ω) ∩ H2

0 (Ω). On each element, a function v in
V HCTh (Ωi) is determined by the values v(ai) and the values of its derivatives ∂v

∂xj
(ai),

j = 1, 2, at the vertices of the element. Denote by t, n, ∂t, and ∂n the tangential
and normal directions, and the tangential and normal derivative, respectively. The
traces of functions from V HCTh (Ω) on ∂Ω are pairs of functions (u,∇v) such that u is
piecewise cubic, n · ∇v is piecewise linear, and u and ∇u are consistent, ∂tu = t · ∇v.
We will abuse notation and write the trace functions simply as (u,∇u) or just u. The
space of HCT trace functions is denoted by V HCTh (∂Ω). Denote the finite element
interpolation operator by IHCT . As in Section 5.1, we abuse the notation by defining
the trace of the interpolation from the boundary degrees of freedom and write, e.g.,
IHCTu

s
r,c ∈ V HCTh (∂Ωs). We adopt the convention that all functions are understood

extended by zero outside of their stated domain; e.g., u|Γ is zero outside of Γ.
The following lemma gives a bound on the interpolation from subdomain corners

to edges.
Lemma 5.3. For every w ∈ V HCTh (∂Ωs), define u ∈ V HCTh (∂Ωs) by HCT in-

terpolation from the corners of Ωs to the edges; that is, u = v and ∇u = ∇w at the
corners of Ωs, and, on each edge Γst, u is a cubic polynomial and n · ∇u is linear.
Then ∣∣(∇(w − u)|Γst)

∣∣
1
2 ,2,∂Ωs

≤ C
(

1 + log
H

h

)
|∇w| 1

2 ,2,∂Ωs .(5.3)

Proof. Denote v = w − u ∈ V HCTh (∂Ω). Then v = 0 and ∇v = 0 on the corners
of Ωs, so from [12, Lemma 4.1], it follows that∣∣(∇v|Γst)∣∣21

2 ,2,∂Ωs
≤ |∇v|21

2 ,2,Γ
st + C

(
1 + log

H

h

)
‖∇v‖20,∞,Γst .(5.4)

Since ∇u|Γst is from a space of dimension 6 and all norms on a finite dimensional
space are equivalent, we have in the case when the length of Γst is one that

|∇u| 1
2 ,2,Γ

st ≤ ‖∇u‖ 1
2 ,2,Γ

st ≈ ‖∇u‖0,∞,Γst .

Since |∇u| 1
2 ,2,Γ

st and ‖∇u‖0,∞,Γst are invariant to stretching the edge, we get

|∇u| 1
2 ,2,Γ

st ≤ C‖∇u‖0,∞,Γst(5.5)

in the general case by scaling. We will show at the end of the proof that

‖∇u‖0,∞,Γst ≤ 5‖∇w‖0,∞,Γst .(5.6)
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From the discrete Sobolev inequality as generalized by [12, Lemma 4.2], we have

‖∇w‖20,∞,Γst ≤ C
(

1 + log
H

h

)(
|∇w|21

2 ,2,Γ
st +

1
H
‖∇w‖20,2,Γst

)
(5.7)

Combining (5.4), (5.6), and (5.7), we obtain

|∇v|21
2 ,2,∂Ωs ≤ C

(
1 + log

H

h

)(
|∇w|21

2 ,2,∂Ωs +
1
H
‖∇w‖20,2,∂Ωs

)
(5.8)

First consider the case when ∂Ωs ∩ ∂Ω = ∅. Then (5.3) is invariant to adding a linear
function to w because v is the error of linear interpolation of w and because this adds
only a constant to ∇w. So, without loss of generality, let

∫
∂Ωs
∇w = 0. Then by the

Poincaré-Friedrichs inequality

1
H
‖y‖20,2,∂Ωs ≤ C|y|21

2 ,2,∂Ωs ,(5.9)

proved first on a reference domain and then scaled [3, 20]. Now (5.9) and (5.8)
give (5.3). In the case when ∂Ωs ∩ ∂Ω 6= ∅, there are some essential boundary condi-
tions on ∂Ωs. Since (5.3) has already been proved in the absence of essential boundary
conditions on ∂Ωs, it is sufficient to restrict (5.3) onto the subspace defined by the
boundary conditions, noting that u satisfies the boundary conditions as well.

It remains to prove (5.6). The inequality is trivial for n · ∇u because the normal
derivative is interpolated linearly between the corners. Let uL be the linear function
on the edge Γst defined by the values of u on the corners. Then, using the triangle
inequality,

‖∂tu‖0,∞,Γst ≤ ‖∂t(u− uL)‖0,∞,Γst + ‖∂tuL‖0,∞,Γst .(5.10)

By a simple computation, we see that the Hermite basis function φ, φ(0) = 0, φ′(0) =
1, φ(1) = φ′(1) = 0, φ a polynomial of order 3, attains the maximum of |φ′| at 0.
Mapping the interval (0, 1) on the edge Γst and noting that u − uL is zero at the
endpoints x1 and x2 of Γst, we get using the triangle inequality that

‖∂t(u− uL)‖0,∞,Γst ≤ |∂t(u− uL)(x1)|+ |∂t(u− uL)(x2)|
≤ 2‖∂tw‖0,∞,Γst + 2‖∂tuL‖0,∞,Γst ,(5.11)

because ∂tu(xi) = ∂tw(xi), i = 1, 2. From the mean value theorem and the fact that
uL(xi) = w(xi), i = 1, 2, it follows that

‖∂tuL‖0,∞,Γst ≤ ‖∂tw‖0,∞,Γst ,(5.12)

hence (5.11) gives

‖∂t(u− uL)‖0,∞,Γst ≤ 4‖∂tw‖0,∞,Γst .(5.13)

Now (5.10), (5.12), and (5.13) give (5.6).
Theorem 5.4. For the fourth order model problem,

λmax(MF )
λmin(MF )

≤ C
(

1 + log
H

h

)2

,

where the constant does not depend on H and h.
10



Proof. The proof follows immediately from Theorem 4.5, with (4.9) being a conse-
quence of Lemma 5.3 and the uniform equivalence of seminorms |∇IHCTwsr,c| 12 ,2,∂Ωs ≈
|wsr,c|Ss , cf., [12].

Remark 5.5. The result extends, by spectral equivalence, to DKT elements and
a certain class of non-locking elements for the Reissner-Mindlin plate model as in
[12]. The result also extends to the case when the subdomain edges are not straight by
considering the subdomains to be images of a reference domain.
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